Вы здесь

Теоремы и задачи комбинаторной геометрии (1965) В.Г. Болтянский

Теоремы и задачи комбинаторной геометрии (1965) В.Г. Болтянский
Теоремы и задачи комбинаторной геометрии
Автор(ы): 
В.Г. Болтянский, И.Ц. Гозберг
Издательство: 
Наука
Год: 
1965
Формат: 
DJVU
Размер: 
1.20 МБ
Описание: 

В теории выпуклых фигур есть много изящных результатов, вполне доступных пониманию школьников и в то же время представляющих интерес для специалистов-математиков. Некоторые из таких результатов мы и хотим предложить вниманию читателя. Мы расскажем о комбинаторных задачах теории выпуклых фигур, связанных главным образом с разбиением фигур на «меньшие» части.

Теоремы и задачи, излагаемые в книге, вошли в математику совсем недавно: самой старой из них недавно исполнилось 30 лет, а многие из теорем находятся еще в «младенческом» возрасте – они опубликованы в специальных математических журналах за последние 5 лет.

Нам кажется, что основная часть книги будет вполне доступна учащимся старших классов, интересующимся математикой. Материал, который покажется сложным, можно пропустить. Наиболее простыми являются §§1-3, 7-10, 12-14, относящиеся к плоским фигурам. Остальные параграфы относятся к пространственным (и даже n-мерным) фигурам. Для требовательного и подготовленного читателя в конце книги сделано несколько примечаний и указан список журнальных статей и книг. Мы не считаем включение такого материала в популярную книгу недопустимым: как нам кажется, популяризация научных знаний возможна не только среди начинающих, но и среди специалистов.

Изложение подводит читателя к современному состоянию рассматриваемых вопросов. В конце книги (§ 19) сформулированы нерешенные проблемы. Некоторые из них настолько наглядны и так просто формулируются, что размышление над их решением доступно даже способным школьникам.

В заключение – несколько слов о самой «комбинаторной геометрии». Эта новая ветвь геометрии еще не сформировалась окончательно, и потому рано говорить о предмете комбинаторной геометрии. Кроме задач, разбираемых в этой книге, к комбинаторной геометрии, несомненно, относится круг вопросов, связанных с теоремой Xелли (см. главу 2 книги [37]), задачи о расположениях фигур (см. превосходную книгу Фейеша Тота [23]) и ряд других вопросов. Заинтересовавшемуся читателю мы очень рекомендуем также книгу Хадвигера и Дебруннера [29], посвященную задачам комбинаторной геометрии плоскости, и интереснейший обзор Грюнбаума [10], тесно соприкасающийся с содержанием предлагаемой вниманию читателя книги.

Авторы пользуются случаем выразить искреннюю признательность И.М. Яглому, энтузиазм и дружеское участие которого немало содействовали улучшению текста книги.

Категория: 

Добавить комментарий